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ABSTRACT 

Selection of the mean (target value) for a container-filling process is an important decision to a producer 

especially when material cost is a significant portion of production cost.  Because the process mean 

determines the process conforming rate, it affects other production decisions, including, in particular, 

production setup and raw material procurement policies.  It is evident that these decisions should be made 

jointly in order to control the production, inventory and raw material costs.  In this paper, we consider 

product of interest is assumed to have a lower specification limit, and the items that do not conform to the 

specification limit are scrapped with no salvage value.  The production cost of an item is a linear function of 

the amount of the raw material used in producing the item, and the supply rate of the raw material is finite and 

constant.  Furthermore, it is assumed that the raw material is perishable and the perishability is incorporate 

into an existing model that was developed for simultaneously determining the process mean, production setup 

and raw material procurement policies for a container-filling process.  A two-echelon model is formulated for 

a single-product production process, and an efficient algorithm is developed for finding the optimal solution. 

Keywords: inventory theory, purchasing, perishability 

I. INTRODUCTION 
Selection of the process mean (target value) for a container-filling process is a 

classical problem in quality control.  A typical situation considered in this 
problem is as follows.  The product of interest has a performance variable with a 
lower specification limit, and the raw material requirement for producing the 
product is an increasing function of the performance variable.  An item is 
classified as conforming if its value of performance variable is larger than or equal 
to the lower limit.  Otherwise, the item is a nonconforming item.  The 
economical components considered in determining the process mean include: (1) 
the payoff (revenue) associated with the conforming items, (2) the payoff (revenue 
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or cost) associated with the disposition of nonconforming items, and (3) the 
production (raw material) cost.  The optimal process mean is determined by 
maximizing the expected total profit or minimizing the expected total cost. 

The existing studies can be categorized into three areas.  The focus of the 
first area is on the payoff aspects of the conforming and nonconforming items.  
For example, Hunter and Kartha (1977) discussed the situation in which 
nonconforming (underfilled) items can be sold at a reduced price and a penalty is 
incurred by the conforming items with excess quality (the difference between the 
performance variable and the lower limit). 

The second area focuses on reprocessing nonconforming items as well as 
overfilled items.  For example, Golhar (1987) assumed that only the regular 
market (fixed selling price) is available for the conforming items and that the 
underfilled items are reprocessed.  Golhar and Pollock (1988) extended Golhar's 
(1987) model to include an artificial upper limit so that nonconforming items are 
re-processed, as well as the items larger than the upper limit. 

The models in the first two areas assume implicitly or explicitly that a 
screening (100% inspection) procedure is used to measure the performance 
variable in order to determine the selling prices and/or the corrective actions. In the 
third area, different inspection methods are considered.  For example, Tang and 
Lo (1993) discussed a situation in which a surrogate variable is used as the 
screening variable.  In addition, variables and attributes acceptance sampling 
plans have also been considered (Boucher and Jafari, 1991; Carlsson, 1980).  
Tang and Tang (1994) have given a detailed review of these three areas. 

Because the process mean determines the process conforming rate, the former 
affects the production yield rate.  As a result, other production decisions, 
including, in particular, production setup and raw material procurement policies, 
are also dependent on the process mean setting.   Roan, Gong and Tang (1994) 
incorporate the issues associated with production setup and raw material 
procurement into the process mean problem.  It is assumed that the product of 
interest requires one major raw material, which is purchased from outside vendors 
with a fixed unit cost.  The production cost of an item is a linear function of the 
amount of the raw material used in producing the item.  A two-echelon model is 
formulated for jointly determining the process mean, production lot size, and raw 
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material procurement policy in a single-product production process.  Roan, Gong 
and Tang (1997) consider a situation wherein a constant supply rate of raw material 
is offered by a reliable source.  Instead of deciding the optimal raw material order 
quantity, setting the optimal supply rate becomes the key concern between the 
manufacturer and the supplier. 

All the papers mentioned above ignore a practical situation, that is, the 
deterioration of the raw material or items produced.  Deterioration is applicable to 
many inventory items in practice, such as volatile liquids, agriculture products, 
radioactive substances, drugs, blood, fashion goods, electronic components, and 
high-tech products.  Existing inventory models for deterioration items are 
numerous, and can be divided into two categories: fixed lifetime and random 
lifetime.  The first category includes those cases where the life time is known a 
priori to be a specified number of periods or a length on time independent of all 
other parameters of the system.  While the second category include exponential 
decay as a special case and will also include those cases where the product lifetime 
is a random variable with specified probability distribution. 

Ghare and Schrader (1963) developed an EOQ model wherein they have 
assumed exponential decay of items (i.e. constant rate of deterioration over time).  
Emmons (1968) considered the decay of radioactive nuclide generators.  This 
differs from the usual consideration in that decay is also the total usage.  Covert 
and Philip (1973), Philip (1974) and Misra (1975) generalized Ghare and 
Schrader’s model in the case of deterioration governed by a Weibull distribution.  
Further extensions of Ghare and Schrader’s model were considered by Shah (1977) 
and Tadikamalla (1978).  Tadikamalla assumed that the lifetime of items is 
governed by a gamma rather than Weibull distribution while Shah considered the 
case of an arbitrary distribution. 

In this paper, we extend the model proposed by Roan et al. (1997) to consider 
a very common situation in practice, that is, raw material is deteriorated over time 
following an exponential distribution. 

The organization of the paper is as follows.  The assumptions and model 
formulation are given in the next section.  Then, in section 3, analytical properties 
of the optimal solution are derived and a solution algorithm is proposed.  An 
example is also given to illustrate the solution procedures in section 3. A sensitivity 
analysis on the effects of model parameters on the optimal solution and the effect 
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of deterioration comparing to the original model is presented in section 4.  The 
last section is a brief summary of the results given in this paper and possible future 
extensions. 

II. MODEL ASSUMPTION AND FORMULATION 

2.1 Notations and Assumptions 
2.1.1 Notations 

In addition to the notations described in the content, the notations are 
summarized as follow. 

D is demand rate per unit time, which is assumed constant. 
r is production rate per unit time, which is assumed constant. 
X is the performance variable of interest. 
L is the lower specification limit of X. 
µ is an adjustable mean of the production process, which is a decision 

variable. 
σ2 is a constant variance of the production process, which is a constant. 
f(x) is the probability density function of X. 
Φ(⋅) is the standard normal distribution function. 
p is the conforming rate of the production process. 
c is the unit cost of the raw material. 
b is the fixed production cost. 
α is a constant larger than or equal to 1. 
g(⋅) is the direct cost of producing an item 
h is the holding cost of each unit of raw material per unit time. 
h1 is the holding cost of a monetary unit of raw material per unit time. 
H is the cost of holding a conforming item for a unit time. 
q is the production run size, which is a decision variable. 
S is the production setup cost. 
β is the raw material supply rate per unit time, which is a decision variable. 
θ is the raw material deteriorating rate. 
It is the amount of raw material surviving to time t exclusive of demand. 
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d(⋅) is the consumption rate of the raw material used in production. 

2.1.2 Assumptions 
Consider a product with a constant demand rate of D items per unit time.  A 

production process with a production rate of r items per unit time is used to satisfy 
the demand.  Let X denote the performance variable of interest, which is a 
measure of the raw material used in the production, such as weight and volume.  
Let L be the lower specification limit of X, so that an item is conforming if its X 
value is larger than or equal to L.  Assume that the production process is stable 
and X follows a normal distribution with an adjustable mean µ and a constant 
variance σ2.  For given µ, the conforming rate of the production process is 

p = ⌡⌠
L

∞
 f(x)dx = 1- Φ



L-µ

σ , (1) 

where f(x) is the probability density function of X and Φ(⋅) is the standard normal 
distribution function. 
 

Assume that nonconforming items are scrapped with no salvage value. 
Consequently, for given µ, the yield of the production process is r×p items per unit 
time.  It is assumed that all the demand will be satisfied in such a way that the 
expected total number of conforming items produced is equal to the total demand 
and no backlog is allowed.  Note that use of the expected conforming items is 
reasonable, especially in high-speed production, because the production output can 
be treated as approximately constant.  Otherwise, it may require considering 
safety stock or using other inventory models.  Note that r×p has to be greater than 
or equal to D to ensure that the production capacity is large enough to meet the 
demand. 

Suppose the unit cost of the raw material is c; thus, cX is the material cost 
required for producing an item of the finished product.  We further assume that 
the direct cost of producing an item is a linear function of the item's material cost: 

g(X) = b + αcX, 

where b is the fixed production cost, and α is a constant larger than or equal to 1.  
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This cost function indicates that the production cost consists of a fixed cost and a 
variable cost that is proportional to the raw material used in production.  This cost 
function allows us to model the production cost for different container-filling 
process.  The fixed cost, b, may include the cost of a container, the average 
production cost excluding the raw material cost, and the overhead cost.  
Furthermore, if the raw material is processed before the filling process, the value of 
the material will increase.  In this situation, α-1 is the relative value (cost) added 
on the raw material during the production process.  It can be verified that, for 
given µ, the expected cost of yielding a conforming item is (b+αcµ)/p.  Let h be 
the cost of holding each unit of the raw material for a unit time.  In other words, 
the cost of holding a monetary unit of raw material is h1 = h/c per unit time.  
Assume that the costs of holding a monetary unit of raw material and finished 
product are the same.  Then, the cost of holding a conforming item for a unit time 
is  

H = h
p (αµ + 

b
c). 

Let q be the production run size, which is the number of items (including both 
conforming and nonconforming items) produced in a production run.  The 
inventory level as a function of time is described in Figure 1(a).  Assume that a 
production run begins at time 0. The finished product inventory increases at a rate 
of rp-D items per unit time until q items are produced.  At time q/r, the production 
run is complete, and, then, the inventory decreases at a rate of D items per unit time 
until time qp/D when the inventory level reaches 0 and the second production run 
starts.  Let S be the production setup cost.  Since the total number of setups 
required per unit time is D/qp, the total setup cost is SD/qp.  It can be verified that 
the average inventory level for the finished product is (q/2r)(rp-D).  As a result, 
the total holding cost for finished products is H(q/2r)(rp-D) per unit time.  
Furthermore, because the expected cost of yielding a conforming item is (b+αcµ)/p, 
the per-unit-time direct production cost is D(b+αcµ)/p. 
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2.2 Model Formulation 
We define the cost associated with the finished product for given raw material 

unit cost c as the sum of the production cost, the process setup cost, and the 
inventory holding cost: 

FPC(µ,q) = 
D(b+ αcµ)

p  + 
DS
pq + H

q
2r(rp -D). (2) 

The expected amount of the raw material required to produce one conforming 
item is µ/p. It is assumed that the raw material arrives at a constant rate β per unit 
time, regardless of whether the production process is in operation or is idle.  
Assume all the raw material received by the producer is either used in production 
or deteriorated over time.  Suppose the lifetime of raw material is a random 
variable with an exponential distribution having parameter θ.  Let IT be the 
amount of raw material surviving to time t exclusive of demand (used in 
production).  The expected amount of raw material surviving until time T + dt is 
ITe-θdt.  In other words, within time dt, the consumption of the raw material is the 
sum of the demand usage d(t)dt, which used in production, and IT (1-e-θdt), which 
deteriorated over time.  That is 

-dI = IT (1-e-θdt) + d (t) dt (3) 

This can be transformed into a differential equation 

( )td
dt
dI

IT −=+ θ . (4) 

Solving the differential equation, we can get  

( ) dttd eeeII tTTT
T

θθθ ∫−− −= 00  (5) 

or 

( ) dttd eeII tTT
T

θθ ∫+= 00  (6) 
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Figure 1. (a) Inventory Level of Finished Product; 
              (b) Inventory Level of Perishable Raw Material 

In Figure 1(b), the inventory level of the perishable raw material as a function 
of time is shown.  The dotted line, on the other hand, shows the inventory level of 
non-perishable raw material. 

We assume that the initial raw material inventory level at time 0 is I0, which 
is sufficient to meet the requirement in the first production run.  When production 
starts, the raw material inventory decreases at a rate of (-rµ+β) plus the 

deterioration.  At time T1 (i.e. 
q
r) the raw material inventory is depleted and the 

first production run is finished.  Then, the process is idle, and the raw material 
inventory level increases at a rate of β and deteriorates at a rate of θ until the 

second production run starts at time (T1+T2)(i.e. 
pq
D ).  In other words, the 

inventory levels at time 0 and time (T1+T2) should be the same.  That is  

I0 = )1( 1)( −− Tr eθ
θ

βµ =  21 TTI + )1( 2Te θ
θ
β −−=  (7) 

Substituting T1 and T2 and ignoring terms with second and higher order 
powers of θ, we can find 



固定易腐物料供應下製程平均數及生產策略之決定      151 

β = 
Dµ
p  

or 

µ = 
pβ
D . (8) 

In order to determine the total holding cost per unit time for the raw material, 
we have to find the average raw material inventory level first.  From Figure 1(b), 
the average raw material inventory level is 

p
D

rD
pq

rD
pq

r
q

r
qr ×−+−++− ]})()([))({( 31

6
21

262

2

3

2

2
θθ ββµ . 

The total holding cost per unit time for the raw material is 

chrqMC p
D

rD
pq

rD
pq

r

q

r

q
1

31
6

21
262

}]})()([))({{(),(
2

3

2

2 ××−+−++−= θθ ββµβ  (9) 

Substituting eq. (8) into eq. (2), eq. (2) can then be expressed as a function of 
β and q, and the total cost is the sum of FPC(β,q) and MC(β,q): 

TC(β,q) = FPC(β,q) + MC(β,q) 

( )Drp
D

chc r
q

p
b

pq
DS

p
Db −






 ++++= 21

αβαβ  +  

βθθ chDrp p
D

rD
pq

rD
pq

r
q

r
q

D 1
31

6
21

262
1 }]})()([))(({{

2

3

2

2 ××−+−++−  (10) 

III. OPTIMAL SOLUTION 
In this section, we first derive important analytical property for the optimal 

solution for the problem defined in the last section.  Based on the result, efficient 
solution algorithm is proposed to find the optimal process mean, production run 
size, and material supply rate. 

3.1 Analytical Properties 
For given β, the optimal production run size is found by solving 

∂TC(β,q)/∂q=0. 
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Result 1: 

That is, q satisfies the following equation. 

0)(]})()([))(({)( 1
31

3
3221

2
1

32
12

2 3

3

2

2

=−+−++−+−− βθθ chqDrpqDrp p
D

rD
pq

rD
p

r

q

r

q
Dp

DS
r

H (11) 

The above equation is a cube function of q.  It’s not easy to solve manually.  
However, it can be solved by coding and using routines for solving nonlinear 
equations in IMSL MATH/LIBRARY. 

3.2 Solution Algorithm 
Because the raw material supply rate is a function of the process mean and 

Result 1 gives the optimal production run size corresponding to a given process 
mean, the total cost becomes a function of the process mean.  Therefore, a 
one-dimensional direct search, such as golden-section search method or any other 
bi-section search method, can be used to search for the optimal process mean.  In 
this paper, the range for the search is [L, L+4σ] and the search is terminated when 
the width of the interval of uncertainty is less than or equal to 0.0001.  In most 
applications, 4σ above L is large enough to include the possible optimal solution.  
The reason L is used as the lower bound is that when µ equals L, the process 
conforming rate is 50%, which is very low in most realistic applications.  Note 
that the golden-section search is based on the splitting of a line into two segments, 
which were actually known in ancient times as the “golden section.”  The ratio of 
the whole to the larger segment is equal to the ratio of the larger segment to the 
smaller segment.  The golden-section search method provides the optimal solution 
if the objective function is unimodal, which was found to be true in all the 
examples that we tested.  In general, multiple starting points can always be used 
in the search procedure to ensure that the global minimum is found. 

The analytical result presented above provides the basis for developing 
efficient solution procedure to find the optimal solution for the problem.  The 
solution procedure is given as follows. 

Step 1. For given µ, β equals Dµ/p. 

Step 2. When β is known, q satisfies eq. (10) in Result 1. 

Step 3. For all the possible pairs of (β,q), computes total cost TC(β,q). 
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Step 4. If the total cost found in Step 3 less than the lowest total cost found 
previously, replaces it. 

Step 5. If termination condition is meet, the µ, β and q corresponding to 

lowest total cost are optimal process mean, raw material supply rate 
and production lot size, respectively.  Otherwise, go to Step 1. 

A FORTRAN program has been written for implementing the solution 
procedures on an Pentium III computer.  The running time for solving each of the 
problems considered in this paper is only a few seconds. 

3.3 Example 
Here, an example, same as the one used in Roan et. al. (1997), is used to 

illustrate the solution procedures given in the last section.  The example will also 
be used in the sensitivity analysis in Section 5. 

Consider a product that requires at least 8 mgs of main content in each item.  
Any item that is less than 8 mgs is considered nonconforming and is scrapped 
without salvage value.  Because of the variation in the production process, the 
content of an item produced by the process follows a normal distribution, with an 
adjustable process mean and a constant standard deviation of 1.2 mgs.  Assume 
that the product demand rate and the production rate are 5,000 items and 7,500 
items per unit time, respectively.  The setup cost per production run is $150, the 
fixed production cost is $0.16 per item, and α  is 4.  The raw material is 
constantly supplied by a vendor at a rate determined by the producer.  
Furthermore, the cost for holding $1 of inventory (finished product or raw material) 
is $0.03 per unit time.  The material cost is $0.1 per mg.  The deterioration rate θ 
is 0.1.  

The golden-section search method is used to find the solution here.  The 
result of the algorithm is given as follows.  

Step 1. When µ = 9.916, p = 0.9449 and the raw material supply rate β = 
52,475.09. 

Step 2. There is only one real solution found.  That means q = 6,336. 

Step 3. TC(52475.09,6336) = 22,105.87. 

Step 4. 22105.87 less than the lowest total cost found previously, replaces it.  
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Step 5. 22105.87 is the lowest total cost until the search procedure terminated.  
The corresponding µ, β  and q are optimal. 

Therefore, the optimal process mean is found to be 9.916 mgs.  The 
corresponding raw material supply rate and the production run size are 
52,475.09mgs and 6,336 items, respectively.  The total cost is $22,105.87.  The 
process conforming rate is 94.49%. 

IV. SENSITIVITY ANALYSIS 
In this section, a sensitivity analysis is performed to study the effects of the 

model parameters on the optimal solutions.  The model parameters included in the 
study are the deterioration rate θ, the demand rate D, the production rate r, the 
process standard deviation σ, the value-added factor α, and the production setup 
cost S.  The sensitivity analyses are based on the example given in the last section.  

4.1 Effect of Deterioration Rate 

Table 1   Effect of Deterioration Rate 
θ µ* q* β* FPC MC TC 

.00 9.915 5927 52475 22077.47 27.03 22104.50 

.05 9.9153 6344 52475 22077.47 28.10 22105.57 

.10 9.916 6336 52475 22077.47 28.40 22105.87 

.20 9.916 6322 52475 22077.49 28.98 22106.47 

.30 9.916 6308 52475 22077.52 29.55 22107.07 

.40 9.916 6294 52475 22077.54 30.12 22107.66 

.50 9.916 6281 52475 22077.57 30.69 22108.26 

.60 9.916 6267 52475 22077.59 31.25 22108.84 

.70 9.916 6254 52475 22077.62 31.81 22109.43 

.80 9.916 6241 52475 22077.65 32.36 22110.01 

θ : Raw material deterioration rate 
µ* : Optimal process mean 
q* : Optimal production lot size 
β* : Optimal raw material supply rate 
FPC : Finished product cost 
MC : Material cost 
TC : Total cost 
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The deterioration rate studied here ranges from 0.0 through 0.8, with an 
increment of 0.1.  Table 1 contains the optimal solutions for the selected 
deterioration rates, including the model parameters, µ, q, and β, and the total costs 
associated with the optimal solution. 

Contrary to what one would expect, the optimal process mean remains almost 
the same when deterioration rate changes.  As a result, the raw material supply 
rate keeps stable.  However, the optimal production lot size increases when 
deterioration exists and decreases as deterioration rate increases.  Because of the 
deterioration, it takes longer time to accumulate the raw material needed for a 
production run.  As a result, the production lot size increases in order to reach a 
higher inventory level when production stops, therefore, to satisfy the demand 
while raw material is accumulated. 

As one would intuitively expect, the total cost increases when deterioration 
rate increases.  However, the increment is small.  This is because the increment 
incurred mainly due to the deterioration of the raw material.  In our model, 
compare to the finished product related cost, the raw material related cost is 
considered to be small.  Therefore, even the cost increment is small, the increment 
percentage is considered to be large. 

4.2 Effect of Demand Rate 
To study the effects of demand rate, we use the results for selected values of 

D ranging from 1,500 to 7,000 per unit time.  As shown in Table 2, when D 
increases, the optimal production run size for cases 1 (without deterioration) and 2 
(with deterioration) increases.  This result makes intuitive sense.   When the 
demand rate is very low relative to the production rate (process capacity), no clear 
patterns were observed on the optimal process mean.  When the demand rate is 
moderate or very high, both the optimal process mean and the material supply rate 
increase steadily as the demand rate increases.  When the demand rate is very 
close to the production rate, because of a low accumulation rate of finished 
products, the production run size becomes very large and sensitive to the change of 
D. 

The optimal process means under different demand rate are almost the same 
for both cases, while the production lot sizes in case 2 are larger than those in case 
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1.  This is because the inventory carried need to be high enough to satisfy the 
demand during the time needed to accumulate the raw material for next production 
run. 

Table 2   Effect of Demand Rate 
CASE 1 CASE 2  

D µ* q* β* µ* q* β* 

1500 9.921 1982 15743 9.923 2111 15743 

2000 9.923 2399 20990 9.921 2558 20990 

2500 9.919 2825 26238 9.922 3015 26238 

3000 9.920 3278 31485 9.921 3501 31486 

3500 9.918 3781 36733 9.919 4040 36733 

4000 9.918 4356 41980 9.918 4657 41980 

4500 9.916 5049 47228 9.917 5398 47228 

5000 9.915 5927 52475 9.916 6336 52475 

5500 9.912 7136 57722 9.914 7623 57722 

6000 9.909 9019 62969 9.910 9633 62969 

6500 9.903 12854 68216 9.333 682645 69996 

7000 9.801 1609350 73510 9.802 356467 73509 

D : Product demand rate 
CASE 1 : Raw material without deterioration 
CASE 2 : Raw material with deterioration 

4.3 Effect of Production Rate 
Table 3 contains the results under selected values of r ranging from 6,000 to 

10,000.  The results of the both cases are very similar.  It is clear that a large 
production rate results in a smaller q* and a larger µ*.  A larger µ* implies a 
higher production yield rate and a higher per-item holding cost.  In order to avoid 
carrying a high level of finished product inventory, therefore, the manufacturer 
should lower the production run size, so as to reduce the cost of holding finished 
product inventory.  Similar to the situation under the change of demand rate, the 
optimal process means under different production rate are almost the same for both 
cases, while the production lot sizes in case 2 are larger than those in case 1. 
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Table 3   Effect of Production Rate 
CASE 1 CASE 2  

r µ* q* β* µ* q* β* 

6000 9.905 9410 52474 9.904 9453 52474 

6500 9.910 7473 52474 9.910 7504 52474 

7000 9.914 6514 52475 9.913 6541 52475 

7500 9.915 5927 52475 9.916 5951 52475 

8000 9.917 5526 52475 9.918 5548 52475 

8500 9.917 5233 52475 9.918 5054 52475 

9000 9.917 5009 52475 9.918 5355 52475 

9500 9.919 4829 52476 9.919 5164 52476 

10000 9.919 4684 52476 9.920 5007 52476 

r : Production rate 

4.4 Effect of Process Standard Deviation 

Table 4   Effect of Process Variation 
CASE 1 CASE 2  

σ µ* p q* β* µ* p q* β* 

.10 8.266 .9961 5946 41492 8.266 .9961 6353 41492

.50 9.005 .9779 5870 46048 9.006 .9779 6274 46048

1.00 9.689 .9543 5893 50760 9.688 .9543 6301 50760

2.00 10.640 .9066 6167 58682 10.640 .9066 6595 58682

3.00 11.203 .8573 6750 65349 11.205 .8573 7214 65349

4.00 11.410 .8031 7906 71043 11.411 .8031 8450 71043

5.00 11.140 .7349 11302 75782 11.138 .7349 12080 75783

6.00 10.584 .6667 1435473 79383 10.584 .6667 1153772 79383

σ : Process standard deviation 

It is well known that the performance of a process can be improved by 
reducing its inherent variation.  For a given process mean, a small process 
standard deviation implies a higher process yield rate.  On the other hand, to 
maintain the same yield rate, the process mean can be set lower when σ is smaller.  
In this situation, the material requirement is reduced and thus the material ordering 
policy may be also affected.  To study the effect of the process standard deviation 



 
158     輔仁管理評論，第八卷第一期，民國 90年 3月 

on the optimal solution, the optimal solutions for some selected values of σ 
ranging from .1 to 6.0 are reported in table 4. 

As one would expected, the total cost decreases as σ decreases.  When σ 
increases, the process conforming rate decreases even though the process mean 
increases until σ = 4.0.  The decrease in the conforming rate is mainly because 
of process variation and excess capacity.  The conforming rate becomes very 
stable, however, when the process yield rate is close to the demand rate.  The 
production run size is relatively stable when σ is small, and becomes very 
sensitive to σ when the production yield rate is close to the demand rate.  The 
material ordering policy is relatively less sensitive to σ.  It shows, however, that 
material order quantity increases when σ increases. 

4.5 Effect of Value-Added Factor 
As shown in Table 5, as α increases, the process mean first decreases and 

then remains stable while production lot size keeps decreasing.  The main reason 
for this is that a larger α implies a larger cost of producing an item and so is the 
holding cost.  In order to reduce these costs, a lower process mean is used. 

Table 5   Effect of Value-Added Factor 
CASE 1 CASE 2  

α µ* q* β* µ* q* β* 

1.0 9.981 9037 52498 9.981 10744 52498 

2.0 9.937 7538 52479 9.939 8438 52480 

3.0 9.923 6591 52476 9.923 7168 52476 

4.0 9.915 5927 52475 9.916 6336 52475 

5.0 9.911 5430 52474 9.910 5741 52474 

6.0 9.908 5040 52474 9.909 5284 52474 

7.0 9.906 4723 52474 9.906 4923 52474 

8.0 9.905 4459 52474 9.904 4627 52474 

9.0 9.903 4236 52474 9.904 4377 52474 

α : Value-added factor 

The above scenario happened in both cases 1 and 2.  The difference between 
the production lot sizes decreases as α increases.  The reason is the increase of 
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holding cost is more than the saving of setup cost.  As a result, the production 
cycle is decreased. 

4.6 Effect of Production Setup Cost 
When the production setup cost increases, the production run size is expected 

to increase in order to reduce the number of production setups.  This result is 
observed in Table 6.  It is interesting, however, to observe that the optimal 
process mean decreases as the production setup cost increases.  Note that a large 
production run size results in holding a larger inventory, and that a smaller process 
mean, on the other hand, reduces per-item inventory cost and process yield rate.  
Since the decreases in the process means are small, the process yield rate remains 
quite stable.  Furthermore, the material supply rate is also very stable when the 
production setup cost increases.  Consequently, it can be concluded that only the 
production run size is significantly affected by the production setup cost. 

Table 6   Effect of Production Setup Cost 
CASE 1 CASE 2  

S µ* q* β* µ* q* β* 

50 9.919 3419 52475 9.921 3638 52476 

100 9.918 4837 52475 9.918 5173 52475 

150 9.915 5927 52475 9.916 6336 52475 

200 9.915 6845 52475 9.914 7317 52475 

250 9.911 7660 52474 9.912 8181 52475 

300 9.910 8392 52474 9.911 8962 52475 

350 9.910 9064 52474 9.909 9682 52474 

400 9.908 9694 52474 9.909 10348 52474 

450 9.907 10284 52474 9.908 10976 52474 

500 9.906 10843 52474 9.906 11572 52474 

550 9.905 11375 52474 9.906 12135 52474 

S : Production setup cost 

V. CONCLUSION 
In this paper, it is assumed that the raw material is supplied at a constant rate 

from outside vendors.  Two cases in terms of deterioration in the raw material are 
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introduced into a two-echelon model, which incorporates the issues associated with 
production run size and raw material procurement policy into the classical process 
mean problem for a single-product production process.  The performance variable 
of the product has a lower specification limit, and the items that do not conform to 
the specification limit are scrapped with no salvage value.  The production cost of 
an item is a linear function of the amount of raw material used in producing the 
item.  Two situations (without and with deterioration) are considered in the raw 
material.  An efficient solution procedure has been developed for a joint 
determination of process mean, production run size and material procurement 
policy for minimizing the total cost incurred by production, inventory holding and 
raw material procurement and deterioration.  A sensitivity analysis reveals the 
effect of the model parameters on the optimal solutions under two cases. 

The effects of perishability cannot be disregarded in many inventory systems.  
This study found that the optimal process mean and optimal supply rate of raw 
material is less sensitive to the perishability, while optimal production run size 
increases when raw material is perishable. 

The model structure presented in this paper provides a useful framework for 
future research on several interesting issues related to this classical problem in 
quality control.  In particular, the following several extensions are possible.  
First, the deterioration of the production process can be incorporated into the model.  
Compare the effects caused by deterioration of finished products and/or raw 
material would be another possible extension.  The third extension is to consider a 
multiple-level filling process in which several raw materials are added in different 
stages.  However, this issue could become very complicated when the product 
conformance is jointly determined by the amount of several raw materials.  These 
issues have been included in the authors' future research plans. 
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APPENDIX 

Proof of eq. (7): 

At time T1 (i.e. 
q
r ) the raw material inventory is depleted and the first 

production run is finished, that is 0
1

=TI  and )()( βµ −= rtd  between time 0 

and time T1.  From eq. (6), 

dtetdI T t∫= 1
00 )( θ  

( ) dtetd T t∫= 1
0

θ  

1
0)( Te t

td 





= θ

θ
 

)1( 1)( −= − Tr eθ
θ

βµ  

Then, the process is idle, and the raw material inventory level increases at a 
rate of β and deteriorates at a rate of θ until the second production run starts at 

time (T1+T2)(i.e. 
pq
D ), that is 0

1
=TI  and β−=)(td  from time T1 and time 

(T1+T2).  From eq. (5), 

dtetdeI tTT
TT

θθ ∫−
+ −= 22

21 0 )(  

)1( 2Te θ
θ
β −−=  

and the equation (7) is obtained. 

Proof of eq. (8): 
From eq. (7),  

)1( 2Te θ
θ
β −−  = )1( 1)( −− Tr eθ

θ
βµ  

12 )()( TT erre θθ βµβµββ −++−=− −  

12 )( TT erre θθ βµµβ −+−=− −  
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Neglecting third and higher order terms in the Taylor series of e and 

, we have 

1Tθ

2Teθ

)1)(()1( 12 TrrT θβµµθβ +−+−=−−  

12 )( TrrrT θβµβµµβθβ −+−+−=+−  

12 )( TrT βµβ −=  

βµ
β
−− == rDpr

D
T
T
2
1  

so )()( βµβ −=− rDDpr  

p
Dµβ =  or D

pβµ =  

and the equation is obtained. 

Proof of eq. (9): 
The average raw material inventory level can be obtained by integrating IT 

over the time interval between time 0 and time (T1+T2).  Due to the consumption 
rates, d(t), of raw material over time intervals from time 0 to time T1 and from time 
T1 and time (T1+T2) are different, we have to do the integration separately.  

(a)The total raw material inventory from time 0 to time T1: 

The raw material consumption rate d(t) is (rµ-β) in this period, so eq. (5) can 
be rewritten as: 

( ) dttd eeeII tTTT
T

θθθ ∫−− −= 00 )1()(
0 eeI TT r θθ

θ
βµ −− −

−
−=  

Integrating IT time 0 to time T1: 

∫∫∫ −− −
−

−=
111

00
0

0
)1()( T

T
T

T
T

T dTrdTdTI eeI θθ
θ

βµ  

Substituting I0 )1( 1)( −= − Tr eθ
θ

βµ  into the above equation, and neglecting 

forth and higher order terms in the Taylor series of , we can then obtain 1Teθ
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dTI
T

T∫
1

0
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1 1
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3
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2
1 TT

r
θ
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(b)The total raw material inventory from time T1 and time (T1+T2): 

Raw material is depleted at time T1, and raw material consumption rate d(t) is 
(-β) in this period.  Following the same procedure above, we can obtain 

dTI
T

T∫
2

0
2

2 1
2 )1(

θ
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)( 62

3
2

2
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The total raw material inventory during a production is ( + ).  

Since 

dTI
T
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1

0
dTI

T
T∫

2

0

r
qT =1  and r

q
D
pq −=2T , the average raw material inventory level is 
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The total holding cost per unit time for the raw material, then, is 

chrqMC p
D
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and eq. (9) is obtained. 
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固定易腐物料供應下製程平均數及生

產策略之決定 

阮金祥 

東吳大學企業管理學系 

摘要 
在裝填製程中，製程平均數（目標值）的決定是一個很重要的產品設計問題，尤其當物料

成本佔產品成本一大部分時。因為製程平均數決定了製程的良率，進而影響到生產計劃和原物

料的採購政策。本文假定一產品中有一原物料（變數）有最低的要求量（下限），如果產品中

之原物料含量少於該下限，將被視為不良品，且無任何殘值；產品之製造成本和產品中之原物

料的含量成線性關係，且原物料的供應是有限且固定的。又假設此原物料具有易腐性，進而將

此易腐性特質加到一個能同時決定製程平均數、生產計劃和原物料的採購政策的模型中。本文

將分別針對此種情形建構數學模型，並發展有效演算法來求得最佳解。 

關鍵詞彙：存貨模型，採購，易腐性 
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