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ABSTRACT 

In this paper, we determine the optimal transfer batch sizes to minimize total batch flow-time when capacity 

constraints exist on the transfer batch. A four step closed form procedure is developed and proved optimal. 

Unlike the results of current research, which show that batch sizes decrease in batch order, we prove that, if 

capacity constraints exist, the batch sizes are only non-increasing in batch order. This result supports the 

approach taken by heuristic methods employed in lot splitting models which assumes equal batch sizes. 

Keywords: optimal transfer gatch sizes, minimum total flow time. 

I. INTRODUCTION 
The determination of the transfer batch size has received increasing 

attention with the growing practical concerns of industries to minimize 
lead times (Smunt et al., 1996).  Transfer batches can be obtained by 
partitioning large orders into smaller batches to move all items more 
quickly through the production system and then the work-in-process 
inventory levels can be reduced.  The fact is accordance with the just-in-
time (JIT) philosophy of making small batches and enhances the interest in 
its application over the last few years (Chen and Steiner, 1997a, 1997b).  
Literature in the area can be classified into two broad categories: 1) the 
determination of optimal transfer batch sizes, and 2) the development of 
heuristics for determining the transfer batch size.  Lee and Chung (1998), 
Dobson, Karmarkar and Rummel (DKR) (1989, 1987), Naddef and Santos 
(1984), and Santos and Magazine (1985) have determined optimal transfer 
batch sizes under varying conditions.  The unique aspect of each of these 
optimal models is that the batch size decreases in batch order in the closed 
job shop environment. 

Furthermore, lot splitting is the process of using transfer batches to 
move completed portions of a production batch to downstream machines 
for minimizing the makespan of the schedule and for lowering the work-in-
process inventory levels (or, the mean flow time) ( Kropp and Smunt 1990; 
and Baker and Pyke 1990).  Szendrovits (1978) formulates a multi-stage, 
single job problem having equal transfer batches of given size.  Under 
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various problem settings, Graves and Kostreva (1987), Vickson and 
Alfredsson (1992) and Steiner and Truscott (1993) find the optimal lot 
splitting schedules.  Using simulation experiments, Jacobs and Bragg 
(1988) and Smunt et al. (1996) obtain some results about the performance 
of the lot splitting decisions respectively.  Kropp and Smunt (1990) and 
Baker and Pyke (1990) developed heuristics utilizing the simplifying 
assumption that the transfer batch sizes are equal.  However, all the 
studies of the above lot splitting problems assume the same condition of 
equal batch sizes in their complex models.  In this paper, we prove that 
the optimal transfer batch sizes can be equal when there is capacity 
constraints on the transfer batch in a closed job shop.  In addition, a four 
step closed form procedure is developed to determine the optimal number 
of batches and their optimal size.  The procedure is proved to be optimal 
and it can be incorporated into existing heuristic methods to improve 
performance of the production system. 

The problem formulation and the conditions for optimality are 
discussed in Section 2 of the paper.  In Section 3, a closed form solution 
procedure is developed and proved to be optimal.  An implementation 
example is given in Section 4.  Section 5 contains possible extensions of 
the work including incorporating the procedure into existing heuristics. 

II. PROBLEM FORMULATION AND CONDITIONS OF 
OPTIMALITY 

To formulate the batch-flow problem with capacity constraints, we 
follow DKR in assuming that the following are known and fixed: 

d = the number of units to be processed, 
s = the setup time for each batch, 
r = the processing rate of the machine, 
K = capacity limit of the transfer batch,  
Likewise, the following decision variables are defined: 
n = the number of batches to be run on the machine, 
qi = the quantity produced in the ith batch, i = 1,2, ..., n . 
The generalized batch-flow problem (P) is given by: 

(P)   Minimize  ∑ ∑
1 1= =

+
n

i

i

k
iki

rqqqs )(  (1) 
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Subject to  (2) ∑
1=

=
n

i

,diq

,n,,,i,Kiq Κ21=≤  (3) 

.n,,,i,iq Κ21=0≥  (4) 

By eliminating constraint (3), problem (P) reduces to the (BF1) problem 
discussed by DKR (1987).  Like problem BF1, problem ( P ) is a convex 
programming problem and the properties of the optimal solution can be derived by 
using the Karush-Kuhn-Tucker conditions.  In the following lemmas n* ≡ l 

represents the optimal number of batches and  represents the optimal size of 

the i

q*
i

th batch.  

Lemma 1.   is nonincreasing in i. q*
i

Proof.      See Appendix. 
Lemma 2.  Problem (P) is equivalent to problem (P1) where P1 is given by: 

(P1)  Minimize ∑ ∑
1 1= =
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,diq

,n,,,i,Kiq Κ21=≤  (7) 

.n,,,i,iq Κ21=0>  (8) 

Proof.      See Appendix. 

Lemma 3,   In the optimal solution of problem (P1), if is not the last batch 

size and  then

q*
i

,K*
iq < .**

1 srqiqi ++=  

Proof.      See Appendix.  
Lemma 4.   For problem (P1), if  is the quantity of the last batch in the 

optimal solution, then 0< min{K, sr}. 

ql
*

≤ql
*

Proof.      See Appendix. 
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Discussion: 
According to Lemma 1, the optimal batch size is nonincreasing in batch order.  

This result is a refinement of current approaches which conclude that the optimal 
batch size is decreasing in batch order.  If the first batch obtained by DKR's 
closed form solution is greater than the upper bound of each batch, then there are l 

batches in the optimal solution such that , j = 1,..., h, and q, is strictly 

decreasing in i, where i = h+1, ..., I . 

K*q
j
=

Lemma 5.  If  and  then  and 

 for i = 1,2,...,h. 

K*q
h
= ,K*q

h
<

1+
sr*q*q

hh
≤−

1+

K*q
i
=

Proof.     See Appendix.  
Corollary 1. If K = ∞, problem (P) reduces to problem BF1 . 
Proof.     See Appendix. 

III. THE SOLUTION PROCEDURE 
In this section, a solution procedure is developed that satisfies the conditions 

of optimality expressed in Lemmas 1 through 5.  Later, we will prove the 
procedure to be optimal. 

Step 1.  If  then the optimal number of batches is given by ,srK ≤











=

K
dn* , 

and theoptimal size of each batch is found by: 
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If K > sr, go to Step 2. 

Step 2.  Let .
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optimal number of batches is given by  and the optimal size of 

each batch is given by: 
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If ,
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 go to Step 3. 

Step 3.  n Let .  If d  

then the optimal number of batches is given by  and the 

optimal size of each batch is given by: 
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Theorem 1.  The above 4 step procedure provides an optimal solution for 
problem P . 

Proof.      See Appendix. 
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IV. AN EXAMPLE 
This example includes five problems.  For each problem, d = 150, s = 5, and 

r = 3, where d, s, and r denote the values for demand, setup time, and processing 
rate.  Problems 1 through 5 have capacity constraints on the transfer batch of 12, 
60, 35, 42, 32 respectively. 

Problem 1: K= 12 

Step 1.  Since  the optimal solution is ,Krs 12=≥15=

,
K
d*n 13=




12
150

=
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Problem 2: K = 60 

Step 1.  Since sr = 15 < K = 60, go to Step 2. 

Step2.  Let .
*
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d
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 the optimal number of batches is 

 The optimal batch size is 

. ,...,iii*/q*
i 41for ,15-75(15)2/ ==−515+4150=

Problem 3: K = 35 

Step 1.  Since sr = 15 < K= 35, go to Step 2. 

Step 2.  Let .
sr
d

n 4=







2
1

−
2

+
4
1

=1   Since K = 35 < 60, go to Step 3. 
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Step 3.  Let ,
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Problem 4: K = 42 

Step 1.  Since sr = 15 < K = 42, go to Step 2. 

Step 2.  Let .
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Problem 5: K = 32 
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Step 1.  Since sr = 15 < R= 32, go to Step 2. 
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V. SUMMARY AND CONCLUSIONS 
In this paper, we derived the conditions for the determination of the optimal 

transfer batch size to minimize total flow-time when there is capacity constraints 
on the transfer batch. The closed form procedure developed is easily applied.  
Furthermore, the procedure can be incorporated into current heuristics of the 
batching problems or the lot splitting problems. The four step procedure can 
replace steps 2, 3a, 3b and 4 of algorithm A reported by Baker and Pyke [1, pp. 
482 ] . This heuristic algorithm first finds that machine with the largest processing 
time. This is equivalent to the processing time used in our closed form procedure.  
For an m machine problem, if a better lower bound with respect to the objective 
function is constructed, then the procedure discussed in Section 3 can be applied to 
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each heuristic of the previous research results (Lee and Chung, 1998; and DKR 
1989, 1987).  Although the lower bound of each previous research is still useful 
for each situation, the analysis of each optimal solution shows that it is possible to 
develop a better lower bound for each case as capacity constraints exist on the 
transfer batch.  The performance of the modified heuristics will be compared with 
the better lower bound and the efficiency of this approach will be investigated in 
future research. 
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APPENDIX 
Proof of Lemma 1.  The proof of Lemma 1 is by contradiction.  Suppose there 

are two batches  and  in the optimal solution such that .  

The optimal solution can be improved by exchanging the order of these two 
batches to build another batch sequence.  Without loss of generality, assume that 
the i

q*
i q*

i 1+

.ti 1−

q*q*
ii >1+

th batch starts at time   By letting FT1 and FT2 denote the batch-flow 

time of the first batching sequence and the second batching sequence respectively, 
the difference between the above flow times only occurs at the ith batch and the 
(i+l)th batch. 

The following expression can be obtained: 

FT1 - FT2 = q*
it s

r
q*

is
r

q*
iq*

it s
r

q*
i

ii 1
1

+++++++++ )()( 1-1-  

])()[- ( q*
it s

r
q*

is
r

q*
iq*

it s
r

q*
i

1-i1-i ++++++++++ 1
1

1  

= s - s   q*
i 1+ q*

i

= s ( -  ). q*
i 1+ q*

i

Since ,  the above difference is positive.  This implies that 

FT1 is greater than FT2 which contradicts the assumption of FT1 being optimal.  

Consequently,  . 

q*
iq*

i >+ 1

q*
iq*

i ≥ 1+

Proof of Lemma 2.  From Lemma 1, the optimal batch size is nonincreasing in 
batch order.  Note that if the batch size is zero, the flow time is also zero.  By 
eliminating the condition, qi = 0,  the optimal solution of problem (P) can be 
obtained by solving problem (P1). 
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Proof of Lemma 3.  Since problem (P) is a convex programming problem, it can 
be restated as: 

(P’ )  Minimize  ∑ ∑
1 1= =

+
n

i

i

k
iki

rqqqs )(  (1) 

Subject to  (2) λ:∑
1=

0=−
n

i

,diq

,n,,,i,i,Kiq Κ21=0≤− µ:  (3) 

,n,,,i,i,iq Κ21=0≥ γ:  (4) 

whereλ, iµ  and 
i

γ  are Lagrangian multipliers. The first order conditions 

are: 

,iir
d

r
iq

is 0=−+−++ γµλ  

,iKiq 0=− µ)(   

,,iiq 0=γ  

.n,,,i,,i,i, Κ21=0≥0≥0≥ γµλ and  

From Lemma 1 and  it is obvious that for 

optimality,

,K*
iq <

0=0=
i

,
i

γµ  and 

.sridrq*
i )(−−=λ   Hence .srq*

iq*
i ++= 1  

Proof of Lemma 4.  Two relationships exist between K and sr .  If  
then  is necessary to satisfy constraint (7).  If K > sr, the following 

relations are obtained from  

,srK ≤

K*
lq ≤

Lemma 3:       ),( srlrdrq*
ll −−−= µλ
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),()( srlrdrq*
ll 1+−−−=0=

1+1+ γλ   

which yields    .rrrsq*
lll 1+

−−= γµ

Because of the nonnegativity restrictions on lµ  and 
1+l

γ , r > 0 and 

 results. Hence, 0srlq ≤* * ≤< ql min{K, sr} . 

Proof of Lemma 5.  Lemma 5 is proved by contradiction.  Assume 

 results in a flow time (FT1) . Then there exists a δ> 1 such that 

 By setting 

sr*q*q
hh

>−
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K*q
h

−=
1+

.srδ ,
2

1-δ' =δ  we can move δ  pieces from 

the h

sr'

th batch to the (h+l)th batch to build a second sequence with a flow time (FT2) .  
Without loss of generality, assume the hth batch starts at time th-1.  The difference 
between FT1 and FT2 is: 
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Because  and r are all positive, the difference, FT1-FT2, is greater 

than zero which contradicts the assumption.  Hence,   

2s,2)(δ'

.sr*q*q
hh

≤−
1+

Proof of Corollary 1.  The proof is quickly shown by noting that if K = ∞, the 
transfer batch does not have capacity constraints.  Consequently, constraint 3 is 
eliminated in problem (P), which is then equivalent to problem BF1 . 

Proof of Theorem 1.  Three relationships exist between sr, K and q1 that 
determine the optimal number of batchs and the batch sizes.  These relationships 
are: 

(1) If  then only one feasible solution satisfies Lemmas 1 through 4.  
This solution is found in Step 1. 

,srK ≤
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(2) If  K > sr  and ,Kq ≤
1

 then the second relation exists which is 

equivalent to problem BF1 of DKR.  The solution procedure is the same as 
that obtained by DKR and is Step 2 of the procedure. 

(3) If K > sr and  Steps 3 and 4 find the unique optimal solution.  

By applying the results of Lemmas 1 through 5, three different cases are 

checked in Steps 3 and 4.  After allocating the quantity  batches 

such that the quantity of the remaining work, is allocated 

to the first  batches such that 

,Kq >
1

,K
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n'd to

,'d−q
i
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difference between q .Kq
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22
1+

and  For the first case, if 

 then the optimal solution is found in Step 3.  If 

 then the remaining work is reallocated to the last  

batches, increasing the number of batches by one.  Since u is the average 
remaining work, if 
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n'dd −−
2
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,eu
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≤  the optimal solution is found in Step 4.  If  u > 
e, then  In this case, e pieces of work are first allocated to the t 
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  The remaining work then equals  

 and it is allocated to the last eK−n'dd −−
2

1−1n  batches. This increases 

the number of batches by one.  After adding 
n

eKn

1

2 −−'dd −
 to the 

last batches, the optimal solution is obtained in Step 4. n1
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摘要 
針對產能限制 (capacity constraints) 的轉換批量 (transfer batch) 問題，本論文乃在確定最

佳化的轉換批量大小以極小化總批量流程時間 (total batch flow-time)。本研究發展出一個具有
四步驟封閉型式的程序 (closed form procedure) 並且經過證明其解答是最佳決策。不同於目前
的研究結果 (其最佳化的批量大小乃隨批量次序遞減)，本論文證明：當存在產能限制時，最
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佳化的批量大小則僅是隨著批量次序有非遞增的事實。此結果支持了批次分散模式  (lot 
splitting model) 中所使用的啟發式方法 (此法乃假定最佳化的批量是等批量大小)。 

關鍵詞彙：最佳化的轉換批量，極小化總批量流程時間 

 

 


